Showing posts with label Circulator. Show all posts
Showing posts with label Circulator. Show all posts

Wednesday, 6 October 2021

Detailed Explanation of Polarization-Maintaining Fibers

With two linear polarization maintaining modes propagating at right angles to each other, a source laser’s output is transmitted in the case of a single-mode fiber.

Compared to cutoff wavelength the laser wavelength is greater, and all the laser energy is confined in the core



It does not have any bends and losses;

There is uniformity in core material;

The cladding and core are perfectly concentric and round;

There is consistency in the fiber and source laser temperatures;

Lateral stress is zero.

There would have been no coupling of power from one mode to the other and it is not at all possible along the fiber’s length. If a modulated signal is carried by a laser output then these two polarization maintaining splitter modes will carry the signal without any dispersion and no crosstalk.

There is no perfection in the manufactured glass materials and waveguides. There is the presence of sub-micron asymmetries and non-uniformities. If single-mode fibers are being cabled and placed in aerial or underground networks then they may experience lateral stress. In handholes, cabinets, closures, and other structures the cable can experience bends or even have coils of slack.

If it is not corrected then this polarization-mode dispersion can have limitations with the distance or the bandwidth of a fiber optic communication system. Thus, to reduce or compensate for this dispersion, fiber, cable, and system designers have developed many techniques. Preform have been optimized by fiber manufacturers and to minimize asymmetry, non-concentricity, and lateral stresses they have drawn processes.



So, in telecom fibers polarization can be effectively managed. Through this, you can find a way to make accurate measurements of motion, vibration, or other phenomena that affects the fiber.

Similar issues are addressed by both the single-mode communications fibers and PM fibers. Few of them are minimizing the effect of external stresses and bends on the polarization maintaining circulator in the fiber. For building asymmetric geometric features and SAPs into fiber you will get many ways that will ultimately give rise to several types of PM fibers. To reduce or compensate for this dispersion, fiber, cable, and system designers have developed many techniques.


Saturday, 11 September 2021

All About Polarization-maintaining Fibers

Optical fibers even if have a circularly symmetric design always exhibit some degree of birefringence because in practice you will always find some amount of mechanical stress or other effects which break the symmetry. The polarization maintaining of light changes in an uncontrolled way gradually.



Principle of Polarization-maintaining Fibers

By using a polarization-maintaining fiber the above problem can be fixed and it is not a fiber without birefringence but on the contrary a specialty fiber with a strong built-in birefringence (high-birefringence fiber or HIBI fiber, PM fiber). The polarization maintaining splitter of light which is launched into the fiber is aligned with one of the birefringent axes and even if the fiber is bent this polarization state will be preserved. The physical principle present behind this can only be understood in terms of coherent mode coupling. Due to the strong birefringence, the propagation constants of the two polarization modes are significantly different and because of it the relative phase of such co-propagating modes rapidly drifts away. During heating, the fibers are slowly stretched and tapered.

Therefore, both modes get effectively coupled by any disturbance along with the fiber and it takes place only if it has a significant spatial Fourier component with a wavenumber matching the propagation constants difference in two polarization modes. The usual disturbances in the fiber are too slowly varying to do effective mode coupling only if the difference is huge. In quantitative terms, compared to the typical length scale on which the parasitic birefringence varies the polarization beat length needs to be significantly shorter.

Few Ways of Realizing Polarization-maintaining Fibers



On the opposite sides performance on of the core, for introducing strong birefringence a commonly used method is including two stress rods of the modified glass composition. One can make bow-tie fiber with different techniques, where the stress elements have a different shape and reach closer to the fiber core so that you can get a stronger polarization maintaining circulator. Due to the strong birefringence, the propagation constants of the two polarization modes are significantly different and because of it the relative phase of such co-propagating modes rapidly drifts away. 


What is Fiber Trunk Cable? Understanding Its Role in High-Speed Networks

In the world of modern communication and data transfer, fiber trunk cable  play a pivotal role in ensuring high-speed, reliable connectivity...